
num

• let num = 5;

ES 6
ES6, also known as ECMAScript 2015, is a significant update to the JavaScript language,

introducing new features and syntax that improve code readability, efficiency, and

expressiveness

Essential JavaScript for React Part 1

1. JavaScript Variables

2. let ,var and const keywords

3. Functions and Arrow Functions

4. Objects

5. Arrays and array methods

JavaScript Variables

There are four ways to declare a JavaScript Variable:

• Using var

• Using let

• Using const

• Using nothing

In programming, a variable is a container (storage area) to hold data. For

example,

Here, is a variable. It's storing 5.

https://nextjs.org/learn/foundations/from-javascript-to-react/essential-javascript-react#%3A~%3Atext%3DHere%27s%20a%20summary%20of%20the%2CArrays%20and%20array%20methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

1. //valid

2. let a = 'hello';

3. let _a = 'hello';

Rules for Naming JavaScript Variables

The rules for naming variables are:

Variable names must start with either a letter, an underscore _, or the dollar

sign $. For example,

Here, x and y are variables.

Both var and let are used to declare variables. However, there are some

differences between them.

Var Let

var is used in the older versions of let is the new way of declaring variables startin

JavaScript ES6 (ES2015).

var is function scoped let is block

For example, var x; For example, let y;

Variable declared by let cannot be redeclared and must be declared before use
whereas variables declared with var keyword are hoisted.

var x;

let y;

In JavaScript, we use either var or let keyword to declare variables. For

example,

Variable names cannot start with numbers. For example,

5. //invalid

6. Let 1a = 'hello'; // this gives an error

Keywords cannot be used as variable names. For example,

Note:

number of apples, it better to use or rather than or n.

• In JavaScript, the variable names are generally written in camelCase if it has

multiple words. For example, firstName, annualSalary, etc.

x numberOfApples apples

JavaScript is case-sensitive. So and are different variables. For example,

• Though you can name variables in any way you want, it's a good practice to

 give a descriptive variable name. If you are using a variable to store the

12. //invalid

13. let new = 5; // Error! new is a keyword.

7. let y = "hi";

8. let Y = 5;

9.

10. console.log(y); // hi

11. console.log(Y); // 5

4. let $a = 'hello';

Y y

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar#Keywords

JavaScript Function

A function is a block of code that performs a specific task.

Suppose you need to create a program to create a circle and color it. You can

create two functions to solve this problem:

Once a constant is initialized, we cannot change its value.

const x = 5;

x = 10; // Error! constant cannot be changed.

console.log(x)
Run Co

Simply, a constant is a type of variable whose value cannot be changed.

Also, you cannot declare a constant without initializing it. For example,

const x; // Error! Missing initializer in const declaration.

x = 5;

console.log(x)
Run Cod

Note: If you are sure that the value of a variable won't change throughout the

program, it's recommended to use const .

const x = 5;

JavaScript Constants

The keyword was also introduced in the ES6(ES2015) version to create

constants. For example,

const

understand and reusable.

JavaScript also has a huge number of inbuilt functions. For

example, is a function to calculate the square root of a number.

In this tutorial, you will learn about user-defined functions.

Math.sqrt()

Declaring a Function

The syntax to declare a function is:

function nameOfFunction () {

// function body

}

• A function is declared using the keyword.

• The basic rules of naming a function are similar to naming a variable. It is

better to write a descriptive name for your function. For example, if a function

is used to add two numbers, you could name the function add or addNumbers.

• The body of function is written within {}.

function

// declaring a function named greet()

function greet() {

console.log("Hello there");

Dividing a complex problem into smaller chunks makes your program easy to

For example,

• a function to draw the circle

• a function to color the circle

Function Parameters

A function can also be declared with parameters. A parameter is a value that

is passed when declaring a function.

Calling a Function

In the above program, we have declared a function named greet(). To use

that function, we need to call it.

Here's how you can call the above greet() function.

// function call

greet();

}

In the above program, the add function is used to find the sum of two numbers.

// program to add two numbers using a function

// declaring a function

function add(a, b) {

console.log(a + b);

}

// calling functions

add(3,4);

add(2,9);

Add Two Numbers

• The function is declared with two parameters a and b .

• The function is called using its name and passing two arguments 3 and 4 in

one and 2 and 9 in another.

Notice that you can call a function as many times as you want. You can write

one function and then call it multiple times with different arguments.

Function Return

The return statement can be used to return the value to a function call.

The return statement denotes that the function has ended. Any code

after return is not executed.

If nothing is returned, the function returns an undefined value.

x

Function Expressions

In Javascript, functions can also be defined as expressions. For example,

// program to find the square of a number

// function is declared inside the variable

let x = function (num) { return num * num };

console.log(x(4));

// can be used as variable value for other variables

let y = x(3);

console.log(y);

In the above program, variable is used to store the function. Here the

function is treated as an expression. And the function is called using the

variable name.

The function above is called an anonymous function.

JavaScript Variable Scope

Scope refers to the availability of variables and functions in certain parts of the

code.

In JavaScript, a variable has two types of scope:

1. Global Scope

a

a

5. // program to print a text

6. let a = "hello";

7.

8. function greet () {

9. console.log(a);

10.}

11.

12.greet(); // hello

considered a global scope variable.

4. Let's see an example of a global scope variable.

global variable. It means the variable can be used anywhere in the program.

The value of a global variable can be changed inside a function. For example,

// program to show the change in global variable

let a = "hello";

function greet() {

a = 3;

}

// before the function call

console.log(a);

//after the function call

greet();

console.log(a); // 3

a

2. Local Scope

3. A variable declared at the top of a program or outside of a function is

In the above program, variable is declared at the top of a program and is a

 the above program, variable is a global variable. The value of is hello.

Then the variable is accessed inside a function and the value changes to 3.

a a

// program showing local scope of a variable

let a = "hello";

function greet() {

let b = "World"

console.log(a + b);

Local Scope Variable

A variable can also have a local scope, i.e it can only be accessed within a

function.

Local Scope

Note: It is a good practice to avoid using global variables because the value of

a global variable can change in different areas in the program. It can introduce

unknown results in the program.

In JavaScript, a variable can also be used without declaring it. If a variable is

used without declaring it, that variable automatically becomes a global

function greet() {

a = "hello"

}

greet();

console.log(a); // hello

variable.

For example,

Hence, the value of changes after changing it inside the function. a

let

In the above program, variable a is a global variable and variable b

variable. The variable b can be accessed only inside the function

local

.

Hence, when we try to access variable b outside of the function, an error

occurs.

let is Block Scoped

The

block).

keyword is block-scoped (variable can be accessed only in the immediate

Example: block-scoped Variable

// program showing block-scoped concept

// global variable

let a = 'Hello';

function greet() {

// local variable

let b = 'World';

console.log(a + ' ' + b);

if (b == 'World') {

// block-scoped variable

let c = 'hello';

console.log(a + ' ' + b + ' ' + c);

}

// variable c cannot be accessed here

console.log(a + ' ' + b + ' ' + c);

}

}

greet();

console.log(a + b); // error

 is a

greet

console.log()

issue.

However, we are trying to access the block-scoped variable outside of the

block in the third console.log(). This will throw an error.

JavaScript Arrow Function

Arrow function is one of the features introduced in the ES6 version of

JavaScript. It allows you to create functions in a cleaner way compared to

regular functions. For example,

This function

c

// using arrow functions

let x = (x, y) => x * y;

using an arrow function.

In the above program, variable

• a is a global variable. It can be accessed anywhere in the program.

• b is a local variable. It can be accessed only inside the function greet.

• c is a block-scoped variable. It can be accessed only inside the if statement

block.

Hence, in the above program, the first two work without any

can be written as

// function expression

let x = function(x, y) {

return x * y;

}

greet();

let myFunction = (arg1, arg2, ...argN) => {

statement(s)

}

Here,

•

•

•

is the name of the function

are the function arguments

is the function body statement(s)

myFunction

arg1, arg2, ...argN

let myFunction = (arg1, arg2, ...argN) => expression

If the body has single statement or expression, you can write arrow function

as:

let greet = () => console.log('Hello');

greet(); // Hello

If a function doesn't take any argument, then you should use empty

parentheses. For example,

Arrow Function with No Argument

Arrow Function Syntax

The syntax of the arrow function is:

let age = 5;

let welcome = (age < 18) ?

() => console.log('Child') :

() => console.log('Ages');

welcome(); // Child

You can also dynamically create a function and use it as an expression. For

example,

Arrow Function as an Expression

let sum = (a, b) => {

let result = a + b;

return result;

}

let result1 = sum(5,7);

console.log(result1); // 12

If a function body has multiple statements, you need to put them inside curly

brackets {}. For example,

Multiline Arrow Functions

let greet = x => console.log(x);

greet('Hello'); // Hello

If a function has only one argument, you can omit the parentheses. For

example,

Arrow Function with One Argument

• - When both arguments are passed, takes 5 and takes 15.

• - When 7 is passed to the

value 5.

function, takes 7 and takes default

• - When no argument is passed to the sum() function, takes default

value 3 and takes default value 5. y

y x sum(5, 15)

x sum()

y x sum() sum(7)

JavaScript Default Parameters

The concept of default parameters is a new feature introduced in

the ES6 version of JavaScript. This allows us to give default values to function

parameters. Let's take an example,
function sum(x = 3, y = 5) {

// return sum

return x + y;

}

console.log(sum(5, 15)); // 20

console.log(sum(7)); // 12

console.log(sum()); // 8
R

In the above example, the default value of x is 3 and the default value

of y is 5.

In the above program,

• The default value of x is 1

function sum(x = 1, y = x, z = x + y) {

console.log(x + y + z);

}

sum(); // 4

Passing Parameter as Default Values

It is also possible to provide expressions as default values.

Using Expressions as Default Values

• 10 is passed to the function.

• becomes 10, and becomes 150 (the sum function returns 15).

• The result will be 160.

y x

calculate()

• The default value of y is set to x parameter

• The default value of z is the sum of x and y

If you reference the parameter that has not been initialized yet, you will

get an error. For example,

function sum(x = y, y = 1) {

console.log(x + y);

}

sum();

Passing Function Value as Default Value

// using a function in default value expression

const sum = () => 15;

const calculate = function(x, y = x * sum()) {

return x + y;

}

const result = calculate(10);

console.log(result); // 160

In the above program,

// object

const student = {

firstName: 'khan',

class: 12

};

JavaScript Object Declaration

The syntax to declare an object is:

const object_name = {

key1: value1,

key2: value2

}

// object creation

const person = {

name: 'Hassan',

age: 20

};

console.log(typeof person); // object

value pair separated by commas and enclosed in curly braces {}.

For example,

Here, student is an object that stores values such as strings and numbers.

Here, an object object_name is defined. Each member of an object is a key:

JavaScript Objects

JavaScript object is a non-primitive data-type that allows you to store multiple

collections of data.

Here is an example of a JavaScript object.

let person = {

name: 'Ali',

age: 20

};

objectName.key

const person = {

name: 'khan',

age: 20,

};

// accessing property

console.log(person.name); // khan

For example,

-

Here, name: 'Ali' and age: 20 are properties.

Accessing Object Properties

You can access the value of a property by using its key.

1. Using dot Notation

Here's the syntax of the dot notation.

objectName["propertyName"]

For example,

const person = {

name: 'khan',

age: 20,

};

// accessing property

console.log(person["name"]); // khan

JavaScript Nested Objects

An object can also contain another object. For example,

// nested object

const student = {

name: 'ali',

age: 20,

marks: {

science: 70,

math: 75

}

}

// accessing property of student object

console.log(student.marks); // {science: 70, math: 75}

// accessing property of marks object

console.log(student.marks.science); // 70

2. Using bracket Notation

Here is the syntax of the bracket notation.

const words = ['hello', 'world', 'welcome'];

Here, words is an array. The array is storing 3 values.

Create an Array

You can create an array using two ways:

1. Using an array literal

The easiest way to create an array is by using an array literal []. For example,

const array1 = ["eat", "sleep"];

const person = {

name: 'khan',

age: 30,

// using function as a value

greet: function() { console.log('hello') }

}

person.greet(); // hello

In JavaScript, an object can also contain a function. For example,

JavaScript Object Methods

An array is an object that can store multiple values at once. For example,

JavaScript Arrays

// empty array

const myList = [];

// array of numbers

const numberArray = [2, 4, 6, 8];

// array of strings

const stringArray = ['eat', 'work', 'sleep'];

// array with mixed data types

const newData = ['work', 'exercise', 1, true];

const newData = [

{'task1': 'exercise'},

[1, 2 ,3],

function hello() { console.log('hello')}

];

const myArray = ['h', 'e', 'l', 'l', 'o'];

// first element

console.log(myArray[0]); // "h"

You can access elements of an array using indices (0, 1, 2 …). For example,

Access Elements of an Array

Here are more examples of arrays:

You can also store arrays, functions and other objects inside an array. For

example,

const array2 = new Array("eat", "sleep");

2. Using the new keyword

You can also create an array using JavaScript's new keyword.

unshift()

// second element

console.log(myArray[1]); // "e"

Add an Element to an Array

You can use the built-in method

array.

and to add elements to an

The push() method adds an element at the end of the array. For example,
let dailyActivities = ['eat', 'sleep'];

// add an element at the end

dailyActivities.push('exercise');

console.log(dailyActivities); // ['eat', 'sleep', 'exercise']

The

example,

method adds an element at the beginning of the array. For

let dailyActivities = ['eat', 'sleep'];

//add an element at the start

dailyActivities.unshift('work');

console.log(dailyActivities); // ['work', 'eat', 'sleep']

Change the Elements of an Array

You can also add elements or change the elements by accessing the index

value.

let dailyActivities = ['eat', 'sleep'];

// this will add the new element 'exercise' at the 2 index

dailyActivities[2] = 'exercise';

console.log(dailyActivities); // ['eat', 'sleep', 'exercise']

unshift() push()

const dailyActivities = ['eat', 'sleep'];

// this gives the total number of elements in an array

console.log(dailyActivities.length); // 2

shift()

pop()

Remove an Element from an Array

You can use the method to remove the last element from an array.

The pop() method also returns the returned value. For example,
let dailyActivities = ['work', 'eat', 'sleep', 'exercise'];

// remove the last element

dailyActivities.pop();

console.log(dailyActivities); // ['work', 'eat', 'sleep']

// remove the last element from ['work', 'eat', 'sleep']

const removedElement = dailyActivities.pop();

//get removed element

console.log(removedElement); // 'sleep'

console.log(dailyActivities); // ['work', 'eat']

If you need to remove the first element, you can use the

method.

The method removes the first element and also returns the removed

element. For example,
let dailyActivities = ['work', 'eat', 'sleep'];

// remove the first element

dailyActivities.shift();

console.log(dailyActivities); // ['eat', 'sleep']

Array length

You can find the length of an element (the number of elements in an array)

using the length property. For example,

shift()

Method Description

concat() joins two or more arrays and returns a result

indexOf() searches an element of an array and returns its position

find() returns the first value of an array element that passes a test

findIndex() returns the first index of an array element that passes a test

forEach() calls a function for each element

includes() checks if an array contains a specified element

push()

aads a new element to the end of an array and returns the new length of a

array

unshift()

adds a new element to the beginning of an array and returns the new leng

of an array

pop() removes the last element of an array and returns the removed element

Array Methods

In JavaScript, there are various array methods available that makes it easier

to perform useful calculations.

Some of the commonly used JavaScript array methods are:

shift() removes the first element of an array and returns the removed element

sort() sorts the elements alphabetically in strings and in ascending order

slice() selects the part of an array and returns the new array

splice() removes or replaces existing elements and/or adds new elements

JavaScript Array Methods

let dailyActivities = ['sleep', 'work', 'exercise']

let newRoutine = ['eat'];

// sorting elements in the alphabetical order

dailyActivities.sort();

console.log(dailyActivities); // ['exercise', 'sleep', 'work']

//finding the index position of string

const position = dailyActivities.indexOf('work');

console.log(position); // 2

// slicing the array elements

const newDailyActivities = dailyActivities.slice(1);

console.log(newDailyActivities); // ['sleep', 'work']

// concatenating two arrays

const routine = dailyActivities.concat(newRoutine);

console.log(routine); // ["exercise", "sleep", "work", "eat"]

JavaScript forEach()

The forEach() method calls a function and iterates over the elements of an

array. The forEach() method can also be used on Maps and Sets.

array

• currentValue - the value of an array

• index (optional) - the index of the current element

arr (optional) - the array of the current elements

forEach with Arrays

The method is used to iterate over an array. For example, forEach()

let students = ['ali', 'hassan', 'saeed'];

// using forEach

students.forEach(myFunction);

function myFunction(item) {

console.log(item);

}

JavaScript forEach

The syntax of the forEach() method is:

Here,

• function(currentValue, index, arr) - a function to be run for each element of an

Output

ali

hassan

saeed

array.forEach(function(currentValue, index, arr))

forEach with Arrow Function

You can use the arrow function with the

For example,

method to write a program.

// with arrow function and callback

const students = ['ali', 'hassan', 'saeed'];

students.forEach(element => {

console.log(element);

});

students.forEach((item, index, arr)=> {

console.log("hello"+item);

});

forEach()

["Hello ali", "Hello hassan", "Hello saeed"]

Output

Updating the Array Elements

As we have seen in the above example, the method is used to

iterate over an array, it is quite simple to update the array elements. For

example,
let students = ['ali', 'hassan', 'saeed'];

// using forEach

students.forEach(myFunction);

function myFunction(item, index, arr) {

// adding strings to the array elements

arr[index] = 'Hello ' + item;

}

console.log(students);

forEach()

key

Iterate Through an Object

const student = {

name: 'khadija',

class: 7,

age: 12

}

// using for...in

for (let key in student) {

// display the properties

console.log(`${key} => ${student[key]}`);

}

JavaScript for...in loop

The syntax of the for...in loop is:

In each iteration of the loop, a key is assigned to the variable. The loop

continues for all object properties.

for (key in object) {

// body of for...in

}

JavaScript Template Literals

Template literals (template strings) allow you to use strings or embedded

expressions in the form of a string. They are enclosed in backticks ``. For

example,

String interpolation

const a = 5;

const b = 10;

console.log("Fifteen is " + (a + b) + " and\nnot " + (2 * a + b) + ".");

// "Fifteen is 15 and

// not 20."

WEEK #2

Essential JavaScript for React Part 2

1. Template literals

2. Spread and Rest Operators

3. Destructuring

4. JavaScript Map, Reduce, and Filter

5. Ternary Operators

6. ES Modules and Import / Export Syntax

Without template literals, when you want to combine output from expressions
with strings, you'd concatenate them using the addition operator +:

That can be hard to read – especially when you have multiple expressions.

const name = 'Ali';

console.log(`Hello ${name}!`); // Hello Ali!

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals#string_interpolation
https://nextjs.org/learn/foundations/from-javascript-to-react/essential-javascript-react#%3A~%3Atext%3DHere%27s%20a%20summary%20of%20the%2CArrays%20and%20array%20methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/Strings#concatenation_using_
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Addition

const a = 5;

const b = 10;

console.log(`Fifteen is ${a + b} and

not ${2 * a + b}.`);

// "Fifteen is 15 and

// not 20."

With template literals, you can avoid the concatenation operator — and
improve the readability of your code — by using placeholders of the
form ${expression} to perform substitutions for embedded expressions:

const arr1 = ['one', 'two'];

const arr2 = [...arr1, 'three', 'four', 'five'];

console.log(arr2);

// Output:

// ["one", "two", "three", "four", "five"]

You can also use the spread syntax ... to copy the items into a single array.

For example,

Copy Array Using Spread Operator

let arr1 = [1, 2, 3];

let arr2 = arr1;

console.log(arr1); // [1, 2, 3]

console.log(arr2); // [1, 2, 3]

// append an item to the array

In JavaScript, objects are assigned by reference and not by values. For

example,

Clone Array Using Spread Operator

const arrValue = ['My', 'name', 'is', 'Ali'];

console.log(arrValue); // ["My", "name", "is", "Ali"]

console.log(...arrValue); // My name is Ali

The spread operator ... is used to expand or spread an iterable or an array.

For example,

Spread Operator

const obj1 = { x : 1, y : 2 };

const obj2 = { z : 3 };

// add members obj1 and obj2 to obj3

const obj3 = {...obj1, ...obj2};

console.log(obj3); // {x: 1, y: 2, z: 3}

You can also use the spread operator with object literals. For example,

Spread Operator with Object

arr1.push(4);

console.log(arr1); // [1, 2, 3, 4]

console.log(arr2); // [1, 2, 3, 4]

Here, both variables and are referring to the same array. Hence the

change in one variable results in the change in both variables.

However, if you want to copy arrays so that they do not refer to the same

array, you can use the spread operator. This way, the change in one array is

not reflected in the other. For example,

let arr1 = [1, 2, 3];

// copy using spread syntax

let arr2 = [...arr1];

console.log(arr1); // [1, 2, 3]

console.log(arr2); // [1, 2, 3]

// append an item to the array

arr1.push(4);

console.log(arr1); // [1, 2, 3, 4]

console.log(arr2); // [1, 2, 3]

arr2 arr1

func()

takes only one parameter.

• When three arguments are passed, the rest parameter takes all three

parameters.

For example,

function sum(x, y ,z) {

console.log(x + y + z);

}

const num1 = [1, 3, 4, 5];

sum(...num1); // 8

Here,

• When a single argument is passed to the function, the rest parameter

You can also pass multiple arguments to a function using the spread operator.

let func = function(...args) {

console.log(args);

}

func(3); // [3]

func(4, 5, 6); // [4, 5, 6]

When the spread operator is used as a parameter, it is known as the rest

parameter.

You can also accept multiple arguments in a function call using the rest

parameter. For example,

Rest Parameter

// assigning object attributes to variables

const person = {

name: 'Khadija',

age: 25,

gender: 'female'

}

let name = person.name;

let age = person.age;

let gender = person.gender;

console.log(name); // Khadija

console.log(age); // 25

console.log(gender); // female

// assigning object attributes to variables

const person = {

name: 'Khadija',

age: 25,

gender: 'female'

}

// destructuring assignment

let { name, age, gender } = person;

console.log(name); // Khadija

console.log(age); // 25

console.log(gender); // female

If you pass multiple arguments using the spread operator, the function takes

the required arguments and ignores the rest.

JavaScript Destructuring

The destructuring assignment introduced in ES6 makes it easy to assign array values

and object properties to distinct variables. For example,

Without Destructuring:

Using Destructuring :

let { age, gender, name } = person;

console.log(name); // khadija

let {name1, age, gender} = person;

console.log(name1); // undefined

const person = {

name: 'Khadija',

age: 25,

gender: 'female'

}

// destructuring assignment

// using different variable names

let { name: name1, age: age1, gender:gender1 } = person;

console.log(name1); // Khadija

console.log(age1); // 25

console.log(gender1); // female

Note: The order of the name does not matter in object destructuring.

For example, you could write the above program as:

For example,

If you want to assign different variable names for the object key, you can use:

Note: When destructuring objects, you should use the same name for the

variable as the corresponding object key.

Access Object Keys, Values & Entries

const person = {

name: 'Hassan',

city: 'Rawalpindi'

};

const person = {

name: 'Hassan',

city: 'Rawalpindi'

};

Object.keys(person); // => ['name', 'city']

You often need to look through the properties and values of plain JavaScript

objects.

Here are the common lists to extract from an object:

• The keys of an object is the list of property names.

• The values of an object is the list of property values.

• The entries of an object is the list of pairs of property names and

corresponding values.

Let's consider the following JavaScript object:

The keys of hero are ['name', 'city']. The values are [Hassan', 'Rawalpindi]. And the

entries are [['name', 'Hassan], ['city', 'Rawalpindi]].

Let's see what utility functions provide JavaScript to extract the keys, values, and

entries from an object.

Object.keys()

Object.keys(object) is a utility function that returns the list of keys of object.

Let's use Object.keys() to get the keys of person object:

Object.keys(person) returns the list ['name', 'city'], which, as expected, are the keys of person object.

Object.values()

Object.values(object) is the JavaScript utility function that returns the list of values of object.

Let's use this function to get the values of hero object:

const person = {

name: 'Hassan',

city: 'Rawalpindi'

};

Object.entries(person); // => [['name','Hassan'],['city','Rawalpindi']]

const arrValue = ['one', 'two', 'three'];

// destructuring assignment in arrays

const [x, y, z] = arrValue;

console.log(x); // one

console.log(y); // two

console.log(z); // three

You can also perform array destructuring in a similar way. For example,

Array Destructuring

Object.values(person) returns the values of hero: ['Hassan', Rawalpindi'].

Object.entries()

Object.entries(object) is an useful function to access the entries of object.

Let's extract the entries of person object:

Object.entries(person) returns the entries of person: [['name', 'Hassan'], ['city',

'Rawalpindi']].

const person = {

name: 'Hassan',

city: 'Rawalpindi'

};

Object.values(person); // => ['Hassan', 'Rawalpindi']

example,

const person = {

name: 'Ali',

}

// assign default value 26 to age if undefined

const { name, age = 26} = person;

console.log(name); // Ali

console.log(age); // 26

Swapping Variables

In this example, two variables are swapped using the destructuring

assignment syntax.

In the above program, arrValue has only one element. Hence,

• the x variable will be 10

• the y variable takes the default value 7

In object destructuring, you can pass default values in a similar way. For

let arrValue = [10];

// assigning default value 5 and 7

let [x = 5, y = 7] = arrValue;

console.log(x); // 10

console.log(y); // 7

You can assign the default values for variables while using destructuring. For

example,

Assign Default Values

Skip Items

You can skip unwanted items in an array without assigning them to local

variables. For example,

const arrValue = ['one', 'two', 'three'];

// destructuring assignment in arrays

const [x, , z] = arrValue;

console.log(x); // one

console.log(z); // three
Run Co

In the above program, the second element is omitted by using the comma

separator ,.

Assign Remaining Elements to a Single Variable

You can assign the remaining elements of an array to a variable using the

spread syntax For example,

const arrValue = ['one', 'two', 'three', 'four'];

// program to swap variables

let x = 4;

let y = 7;

// swapping variables

[x, y] = [y, x];

console.log(x); // 7

console.log(y); // 4
Run Code

const arrValue = ['one', 'two', 'three', 'four'];

// throws an error

For example,

Note: The variable with the spread syntax cannot have a trailing comma , .

You should use this rest element (variable with spread syntax) as the last

variable.

Here, one is assigned to the variable. And the rest of the array elements are

assigned to variable.

You can also assign the rest of the object properties to a single variable. For

example,

const person = {

name: ' Khadija ',

age: 25,

gender: 'female'

}

// destructuring assignment

// assigning remaining properties to rest

let { name, ...rest } = person;

console.log(name); // Khadija

console.log(rest); // {age: 25, gender: "female"}
R

// destructuring assignment in arrays

// assigning remaining elements to y

const [x, ...y] = arrValue;

console.log(x); // one

console.log(y); // ["two", "three", "four"]
Run Co

y

x

JavaScript Map, Reduce, and Filter - JS Array Functions

Filter

const numbers = [1, 2, 3, 4];

const doubled = numbers.map(item => item * 2);

console.log(doubled); // [2, 4, 6, 8]

Map, reduce, and filter are all array methods in JavaScript. Each one will

iterate over an array and perform a transformation or computation. Each will

return a new array based on the result of the function.

The map() method is used for creating a new array from an existing one,

applying a function to each one of the elements of the first array.

In the callback, only the array element is required. Usually some action is

performed on the value and then a new value is returned.

In the following example, each number in an array is doubled.

The filter() method takes each element in an array and it applies a

conditional statement against it. If this conditional returns true, the element

Example

var new_array = arr.map(function callback(element, index, array) {

// Return value for new_array

}[, thisArg])

Syntax

Map

const [...x, y] = arrValue;

console.log(x); // error

const numbers = [1, 2, 3, 4];

const evens = numbers.filter(item => item % 2 === 0);

console.log(evens); // [2, 4]

const students = [

{ name: 'ali', grade: 96 },

{ name: 'hamid', grade: 84 },

{ name: 'nasir', grade: 100 },

{ name: 'noman', grade: 65 },

{ name: 'anas', grade: 90 }

];

const studentGrades = students.filter(student => student.grade >= 90);

return studentGrades; // [{ name: 'ali', grade: 96 }, { name: 'nasir', grade: 100

}, { name: 'anas', grade: 90 }]

gets pushed to the output array. If the condition returns false, the element
does not get pushed to the output array.

The syntax for filter is similar to map, except the callback function should

return true to keep the element, or false otherwise. In the callback, only

the element is required.

In the following example, odd numbers are "filtered" out, leaving only even
numbers.

In the next example, filter() is used to get all the students whose grades

are greater than or equal to 90.

var new_array = arr.filter(function callback(element, index, array) {

// Return true or false

}[, thisArg])

Syntax

Examples

Examples

const numbers = [1, 2, 3, 4];

const sum = numbers.reduce(function (result, item) {

return result + item;

}, 0);

console.log(sum); // 10

The reduce() method reduces an array of values down to just one value. To

get the output value, it runs a reducer function on each element of the array.

arr.reduce(callback[, initialValue])

The callback argument is a function that will be called once for every item in

the array. This function takes four arguments, but often only the first two are
used.

• accumulator - the returned value of the previous iteration

• currentValue - the current item in the array

• index - the index of the current item

• array - the original array on which reduce was called

• The initialValue argument is optional. If provided, it will be used as

the initial accumulator value in the first call to the callback function.

The following example adds every number together in an array of numbers.

In the next example, reduce() is used to transform an array of strings into a

single object that shows how many times each string appears in the array.

Notice this call to reduce passes an empty object {} as

the initialValue parameter. This will be used as the initial value of the

accumulator (the first argument) passed to the callback function.

var pets = ['dog', 'chicken', 'cat', 'dog', 'chicken', 'chicken', 'rabbit'];

Syntax

Reduce

A ternary operator evaluates a condition and executes a block of code based

on the condition.

Its syntax is:

Ternary Operator

/*

Output:

{

dog: 2,

chicken: 3,

cat: 1,

rabbit: 1

}

*/

condition ? expression1 : expression2

The ternary operator evaluates the test condition.

• If the condition is true , expression1 is executed.

• If the condition is false , expression2 is executed.

The ternary operator takes three operands, hence, the name ternary operator.

It is also known as a conditional operator.

var petCounts = pets.reduce(function(obj, pet){

if (!obj[pet]) {

obj[pet] = 1;

} else {

obj[pet]++;

}

return obj;

}, {});

console.log(petCounts);

JavaScript Modules

As our program grows bigger, it may contain many lines of code. Instead of

putting everything in a single file, you can use modules to separate codes in

separate files as per their functionality. This makes our code organized and

easier to maintain.

Module is a file that contains code to perform a specific task. A module may

contain variables, functions, classes etc. Let's see an example,

Suppose, a file named Hello.js contains the following code:

Now, to use the code of Hello.js in another file, you can use the following

code:

// exporting a function

export function sayHello(name) {

return `Hello ${name}`;

}

// program to check pass or fail

let marks = 78;

// check the condition

let result = (marks >= 40) ? 'pass' : 'fail';

console.log(`You ${result} the exam.`);

Let's write a program to determine if a student passed or failed in the exam

based on marks obtained.

Example: JavaScript Ternary Operator

import { sayHi } from './Hello.js';

export const myNumbers = [1, 2, 3, 4];

const animals = ['Panda', 'Bear', 'Eagle']; // Not available directly

outside the module

export function myLogger() {

console.log(myNumbers, animals);

}

Here,

• The function in the Hello.js is exported using the keyword

• Then, we imported in another file using the keyword. To import

 functions, objects, etc., you need to wrap them around { }.

You can only access exported functions, objects, etc. from the module. You

need to use the export keyword for the particular function, objects, etc. to

import them and use them in other files.

You can export members one by one. What’s not exported won’t be available

directly outside the module:

export function sayHello(name) {

…

}

// importing greetPerson from greet.js file

import { SayHello } from './Hello.js';

// using greetPerson() defined in greet.js

let displayName = sayHello('Yasir');

console.log(displayName); // Hello Yasir

import sayHi()

export sayHi()

Exporting with alias

export { myNumbers, myLogger};

Default export

export { myNumbers, myLogger as Logger}

Importing with alias

export default function myLogger() {

console.log(myNumbers, pets);

}

export const myNumbers = [1, 2, 3, 4];

const animals = ['Panda', 'Bear', 'Eagle'];

Importing all exported members

import myLogger as Logger from 'app.js';

import * as Utils from 'app.js';

Or you can export desired members in a single statement at the end of the

module:

You can also give an aliases to exported members with the as keyword:

You can define a default export with the default keyword:

You can also alias members at import time:

You can import everything that’s imported by a module like this:

Utils.myLogger();

This allows you access to members with the dot notation:

