
Web Application Development

Web APIs, JSON, FETCH, AXIOS

Web APIs

• A Web API (Application Programming Interface)
is a set of rules and protocols that allows one
application to communicate with another over
the web.

• You can consume Web API Services using any
front-end technology like JavaScript, Jquery,
Angular or React.

• We will study Jquery to consume APIs, and
Laravel to create our own API.

2 5/8/2025

Web API

• Web APIs are created using server side
lanaguages/technogies, and front-end consumes
it.

• WebAPis are just a set of link that provides data
in JSON formate.

– For example,
https://jsonplaceholder.typicode.com/users

– The response message contains a JSON object.

– Some APIs may return data in XML format.

3 5/8/2025

https://jsonplaceholder.typicode.com/users

JSON vs XML

• Comparing JSON with XML
– The simple difference of JSON and XML are as following

4 5/8/2025

JSON XML

JSON VS XML

• JSON

• XML

5 5/8/2025

JSON

• JSON

– JSON (JavaScript Object Notation) is a lightweight
data-interchange format.

– It is easy for humans to read and write.

– It is easy for machines to parse and generate.

– JSON is a text format that is completely language
independent but uses conventions that are familiar
to programmers of the C-family of languages,
including C, C++, C#, Java, JavaScript, Perl, Python,
and many others.

6 5/8/2025

JSON

• JSON object Syntax

– { "name":"John", "age":30, "car":null }

– JSON objects are surrounded by curly braces {}.

– JSON objects are written in key/value pairs.

– Keys must be strings, and values must be a valid JSON
data type (string, number, object, array, boolean or
null).

– Keys and values are separated by a colon.

– Each key/value pair is separated by a comma.

7 5/8/2025

JSON VS XML

• JSON

8 5/8/2025

JSON VS XML

• XML

9 5/8/2025

JSON

• Comparing JSON with XML

– Both are self descriptive

– Both are hierarchical

– Both can be parsed by programming languages

– JSON is shorter and therefore quicker

– JSON doesn’t uses tags as XML

10 5/8/2025

WebAPI Response

• https://jsonplaceholder.typicode.com/users/1

• The response message contains a json object as
described in following

11 5/8/2025

https://jsonplaceholder.typicode.com/users/1

How to Call an WebAPIs

• Use Fetch

• Use AXIOS

– npm install axios

12 5/8/2025

Fetch API

13 5/8/2025

Syntax

Fetch Data using AXIOS

14 5/8/2025

axios.get(‘Web-api link')

.then(response => {

console.log(response.data); })

.catch(error => {

console.error(error);

});

AXIOS GET Request

15 5/8/2025

axios.get(‘Web-api link')

.then(response => {

console.log(response.data); })

.catch(error => {

console.error(error);

});

FETCH AXIOS response

• https://jsonplaceholder.typicode.com/users/1

• The response message contains a json object as
described in following

16 5/8/2025

https://jsonplaceholder.typicode.com/users/1

AXIOS POST Request

axios.post('https://jsonplaceholder.typicode.com/posts', {

title: 'New Post',

body: 'Post content',

userId: 1

})

.then(response => {

console.log(response.data);

})

.catch(error => {

console.error(error);

});

17 5/8/2025

AXIOS POST Request

18 5/8/2025

19 5/8/2025

In JavaScript, async and await are used to handle asynchronous
operations more cleanly and clearly than using traditional Promises
or callbacks.

• Async: When you declare a function with async, it
automatically returns a Promise, even if you return a non-

promise value. This lets you use await inside that function.

• Await: The await keyword can only be used inside an async

function. It pauses the execution of the function until the awaited
Promise is resolved or rejected

Async and Await (modern javascript)

20 5/8/2025

async function getUser() {

try {

let response = await fetch("/user");

let user = await response.json();

console.log(user);

} catch (error) {

console.error("Error:", error);

}

}

Async and Await Example

Task

• Once you have web APIs in hand, now it is
possible to consume them from any type of
application irrespective of their technology.

• We can use React to send some new data to the
server. And get response from server in JSON
format, Process or display the data using DOM.

21 5/8/2025

Task

• Create a dashboard where you can execute

– Add

– Update

– Get

– Get all

– Delete

• Operation on

– http://exampleapi.somee.com/api/person

22 5/8/2025

Dashboard

23 5/8/2025

Reference contents

• Some of HTTP status code

– https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

24 5/8/2025

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

	Default Section
	Slide 1: Web Application Development
	Slide 2: Web APIs
	Slide 3: Web API
	Slide 4: JSON vs XML
	Slide 5: JSON VS XML
	Slide 6: JSON
	Slide 7: JSON
	Slide 8: JSON VS XML
	Slide 9: JSON VS XML
	Slide 10: JSON
	Slide 11: WebAPI Response
	Slide 12: How to Call an WebAPIs
	Slide 13: Fetch API
	Slide 14: Fetch Data using AXIOS
	Slide 15: AXIOS GET Request
	Slide 16: FETCH AXIOS response
	Slide 17: AXIOS POST Request
	Slide 18: AXIOS POST Request
	Slide 19: Async and Await (modern javascript)
	Slide 20: Async and Await Example
	Slide 21: Task
	Slide 22: Task
	Slide 23: Dashboard
	Slide 24: Reference contents

