
Web Application Development

Web APIs, JSON, FETCH, AXIOS



Web APIs

• A Web API (Application Programming Interface) 
is a set of rules and protocols that allows one 
application to communicate with another over 
the web. 

• You can consume Web API Services using any 
front-end technology like JavaScript, Jquery, 
Angular or React.

• We will study Jquery to consume APIs, and 
Laravel to create our own API.
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Web API

• Web APIs are created using server side 
lanaguages/technogies, and front-end consumes 
it. 

• WebAPis are just a set of link that provides data 
in JSON formate.

– For example,
https://jsonplaceholder.typicode.com/users

– The response message contains a JSON object.

– Some APIs may return data in XML format.
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https://jsonplaceholder.typicode.com/users


JSON vs XML

• Comparing JSON with XML
– The simple difference of JSON and XML are as following
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JSON XML



JSON VS XML

• JSON

• XML
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JSON

• JSON

– JSON (JavaScript Object Notation) is a lightweight
data-interchange format.

– It is easy for humans to read and write.

– It is easy for machines to parse and generate.

– JSON is a text format that is completely language
independent but uses conventions that are familiar
to programmers of the C-family of languages,
including C, C++, C#, Java, JavaScript, Perl, Python,
and many others.
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JSON

• JSON object Syntax 

– { "name":"John", "age":30, "car":null }

– JSON objects are surrounded by curly braces {}.

– JSON objects are written in key/value pairs.

– Keys must be strings, and values must be a valid JSON 
data type (string, number, object, array, boolean or 
null).

– Keys and values are separated by a colon.

– Each key/value pair is separated by a comma.
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JSON VS XML

• JSON
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JSON VS XML

• XML
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JSON

• Comparing JSON with XML

– Both are self descriptive

– Both are hierarchical

– Both can be parsed by programming languages

– JSON is shorter and therefore quicker 

– JSON doesn’t uses tags as XML
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WebAPI Response

• https://jsonplaceholder.typicode.com/users/1

• The response message contains a json object as 
described in following
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https://jsonplaceholder.typicode.com/users/1


How to Call an WebAPIs

• Use Fetch

• Use AXIOS

– npm install axios
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Fetch API
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Syntax



Fetch Data using AXIOS
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axios.get(‘Web-api link')

.then(response => {

console.log(response.data); })

.catch(error => {

console.error(error);       

});



AXIOS GET Request
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axios.get(‘Web-api link')

.then(response => {

console.log(response.data); })

.catch(error => {

console.error(error);       

});



FETCH AXIOS response

• https://jsonplaceholder.typicode.com/users/1

• The response message contains a json object as 
described in following
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https://jsonplaceholder.typicode.com/users/1


AXIOS POST Request

axios.post('https://jsonplaceholder.typicode.com/posts', {

title: 'New Post',

body: 'Post content',

userId: 1

})

.then(response => {

console.log(response.data);

})

.catch(error => {

console.error(error);

});
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AXIOS POST Request
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In JavaScript, async and await are used to handle asynchronous 
operations more cleanly and clearly than using traditional Promises 
or callbacks. 

• Async: When you declare a function with async, it 
automatically returns a Promise, even if you return a non-

promise value. This lets you use await inside that function. 

• Await: The await keyword can only be used inside an async

function. It pauses the execution of the function until the awaited 
Promise is resolved or rejected 

Async and Await (modern javascript)
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async function getUser() {

try {

let response = await fetch("/user");

let user = await response.json();

console.log(user);

} catch (error) {

console.error("Error:", error);

}

}

Async and Await Example



Task 

• Once you have web APIs in hand, now it is
possible to consume them from any type of
application irrespective of their technology.

• We can use React to send some new data to the
server. And get response from server in JSON
format, Process or display the data using DOM.
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Task

• Create a dashboard where you can execute 

– Add

– Update

– Get

– Get all

– Delete

• Operation on 

– http://exampleapi.somee.com/api/person
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Dashboard 
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Reference contents 

• Some of HTTP status code

– https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
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https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
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